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This presentation analyses Shannon's famous theoretical result on the maximum achievable inform-
ation bitrate and applies the results to the case of a minimal QSO.  It will be explained why the 
energy to communicate an optimally encoded callsign in a single transmission is more than twice 
that given by the Shannon limit and more than eight times in the case of an uncoded transmission. 

1.  The Channel Capacity

On VHF and above a very good model of the noise is the Additive White Gaussian Noise (AWGN). 
The power spectral density of the AWGN (the power per Hz of bandwidth) is

N0  = kB T

kB = 1.38*10-23 W / (K*Hz)  is the Boltzmann-constant, and T is the  equivalent noise temperature in 
degrees Kelvin.  The noise temperature varies with frequency, but it is assumed constant within the 
received bandwidth (that is the meaning of the term “white“).  On 2m, T lies between 200 K and 
800 K.  It especially depends on which part of our galaxy radiates into the antenna.  At zero elev-
ation also the earth surface contributes (and man-made wideband noise). 

Fig 1 :  Theoretical limit of the rate of received information in bits per second (so called channel 
capacity) as a function of  bandwidth and relative signal power or signal to noise ratio (SNR, red 

lines). The bold blue lines mark usual bandwidths of 50 Hz, 500 Hz, and 2000 Hz.



Let  b  be the used bandwidth,  P  the received signal power at the demodulator, and  SNR the 
signal-to-noise ratio at the demodulator.   Shannon [1] deduced a theoretical limit  of the rate of 
received information bits which he called the channel capacity (ld denotes the base-2 logarithm):

C = b * ld( 1 + P / (b * N0) ) = b * ld( 1 + SNR )

Figure 1  shows this maximum rate  C  as a function of bandwidth  b  and signal power  P.  The  red 
diagonal lines denote constant SNR.  On the bold red line we have  SNR = 1  and  C = b .  The three 
usual bandwidths 50 Hz (CW EME), 500 Hz (Pactor2), and  2000 Hz (FSK441, JT65b etc.)  are 
stressed by bold blue lines.  

To ease the interpretration of figure 1 we use the two sectional views of figures 2 and 3.

  

Fig 2 :  Sectional view of figure 1:  Relative channel capacity as a function of  bandwidth
at constant signal power. The red line at ld(e) ist the theoretical upper limit found by 
Claude Elwood Shannon.  It is obvious that the upper limit only could be reached at 
very large bandwidth (resp. very low SNR).  In practise, the usable bandwidth often

is limited by birdies.

Different from figure 1, the bandwidth is scaled logarithmically in figure 2, and both axes are made 
relative to their values at  SNR = 1 .  As a consequence, figure 2 represents the sectional views of 
figure 1 for all possible constant values of the signal power. 

We now discuss  the  important  case  of  constant  signal  power,  but  no  restriction  in  bandwidth. 
Figure 2 shows that the maximum rate of received information (the channel capacity) is maximized 
at large bandwidth. The maximum value is

Cmax = ld( eP/No )

Figure 2  is normalized such that  P/N0 = 1 .  Thus  

Cmax = ld(e) = 1.4427



From the signal power  P  and the rate of information bits per second  Cmax  we get the minimum 
energy per information bit  Eb min  =  P/Cmax  and finally   

Eb min  / N0  = ( P/Cmax ) / N0 = ln 2 = 0.6931

Usually this is written as

Eb / N0  ≥  ln 2    or  in dB:    Eb / N0  ≥  10  log10  ( ln2 ) = -1.5917 dB

Using  N0  = kB T  from above with  kB = 1.38*10-23 W / (K*Hz)  and  T = 300 K  for example we get 
Eb   ≥  ln(2)  kB T =  2.87*10-21 Ws .

This is the minimum necessary energy to receive an information bit confidently.  It is important to 
differentiate between information content measured in bits and the binary digits that represent the 
information. An information content of  k bits can be encoded by at least  k binary digits. Forward 
error  correcting codes  actually use  n>k  binary digits  to  encode  k   bits  of  information.  The 
overhead of  n – k  bits is called redundancy, the ratio  k/n  is called the code rate.   

Figure 2 makes clear that the channel capacity increases at increasing bandwidth. But the Shannon 
limit is rapidly reached.  Above  b = 10 b1  not more than  0.2 dB  could be additionally gained.  Let 
for example be   SNRdB = -24 dB  at  b = 2000 Hz .  The bandwidth for  SNR = 1  (SNRdB = 0)  
then is  b1 = b /  (10SNRdB/10)  = 7.96 Hz.  Figure 2 is normalized to this  value.   If we now use 
b = 80 Hz   instead of  b = 7.96 Hz  then we get an increase by a factor of  1.37 .   

Now, we discuss the inverse case of costly bandwidth and cheap signal power.  It is profitable then 
to leave the point of  SNR = 1  to the left.  Halving the bandwidth only reduces the capacity to 
0.8 C1 .   Further  reduction of  the  bandwidth  to  1/50  decreases  the  capacity to   1/10  of  that  at 
SNR = 1. 

Fig 3 :  Sectional view of figure 1:  Relative channel capacity as a function of signal power at 
constant bandwidth. This figure shows that the power must be exponentially increased to get

a constant gain of bitrate. 



Figure 3 shows the channel capacity as a function of signal power at constant bandwidth. Again 
starting at  the point   SNR = 1 ,  we observe that  an increase of the signal power by a decade 
increases the channel capacity by a factor of 3.5 .  Any further increase of the signal power by 
additional decades only add   ld(10) * C1 = 3.322 C1  to the capacity. 

The theoretical deduction of Shannon is based on the idea of communicating  infinite amounts of 
information. The value of the Shannon limit is applicable only to that academic case.  If a limited 
information content of  k bits is communicated by a codeword of  n  binary digits then another limit 
can be deduced by geometric arguments.  It is called the sphere-packing bound.  Unfortunately, this 
bound cannot be reached in the case of an AWGN channel. This presentation will use the Plotkin-
bound  instead [3].

Codes usually are rated by values of  Eb / N0   that guarantee a word error rate of 10-4  (or 10-6) .  This 
means that on average only one out of 10000 (or 1000000) decoded messages is wrong.  Figure 4 
shows the sphere-packing bound for code rate r = 0 .  At very large information content (k = 106) 
the sphere-packing bound reaches the Shannon limit of  -1.59 dB.   The figure also contains the 
values of  Eb / N0  for some codes required for a word error rate of 10-4 .  The information content of 
messages within a minimal QSO only lies between  1 and 30 bits. It follows from figure 4 that the 
required signal power then is at least twice as large as in deep space applications.

http://www331.jpl.nasa.gov/public/AllCodesVsSize.GIF

Fig. 4  Required values of  Eb/N0  to reach a word error rate of  PW=0.0001 for some codes.
Codes that encode many information bits (k=104 for ex.) need less energy per bit. Beyond
104 bits there is no further practical gain that could justify the enormous effort to decode
longer words.  Deep space missions therefore use codes in this region as is indicated by

Voyager, Cassini, and Galileo. 

2.  The Case of a Minimal QSO

The case of a minimal QSO in Ham Radio is entirely different from commercial applications or 
deep space:

(a)  The main challenge is to  succeed in the synchronisation of two stations for at least four periods 
of  subsequent  transmissions.  This  includes  at  both  ends:  packet  synchronization,  symbol 
synchronization (and carrier synchronization if a coherent demodulation is used). 

(b)  There is no need to exchange any information except from the control information to identify 
both  stations  and  to  acknowledge  correct  reception.   This  accumulates  to  an  extremely  low 
information content of  about  4 ... 80 bits transferred in both directions.

(c)  The allowed word error rate is much higher than in commercial applications.  A word error rate 
of  0.1  is a good condition. Even at a word error rate of  0.5 and one repetition of each transmission 
a standard procedure of four steps would work correctly in 30% of all cases.

(d)  Because of the low information content of the transmissions very low code rates are practical. If 
30 information bits  must  be transmitted within 60 seconds then the uncoded transmission only 
needs  about 1.0 Hz of bandwidth. If we allow a bandwidth of  500 Hz for the encoded transmission 
then a code rate of  0.02  is possible, i.e. the  30 information bits may be encoded by a code word of 
15000 binary digits.

http://www331.jpl.nasa.gov/public/AllCodesVsSize.GIF


(e)  Switch-over between reception and transmission costs about one second. The decision of the 
operator which content to send needs even more time. Therefore the time to decode the last received 
pass also is allowed to take about a second. That is very much more than in commercial applicat-
ions. This makes codes practical that have a complex decode algorithm.

The literature rarely offers information on codes used under these special conditions.  And informat-
ion on codes optimized to these conditions is even more rare. It is the aim of this presentation to fill 
that gap.

3.  Forward Error Correction

We use the simple case of  k = 4  information bits to be encoded. Then there exist only 16 different 
messages. Table 1  lists all messages for six different binary codes.

Table 1  Example of  6  binary codes that all encode  4  information bits. The most left column lists 
all 16 possible binary patterns of the  4  information bits (uncoded). The separated column within 
the “uncoded“ section is the parity of the pattern. The four information bits plus the parity bit are 
the parity code.  The (7,4)-Hamming code encodes the  4  information bits  into  7  bits  of the 
codeword. If the parity of the codeword is used additionally (the 8th bit to the right in the Hamming-
section) the code is called the (8,4)-extended Hamming code.  The 1st-order Reed Muller code also 
is an (8,4)-code, i.e.  4 information bits are encoded by  8 binary digits of the code word. The 
convolutional code uses the three polynomials 100,110,111  tail-biting resulting in a (12,4)-code. 
The (15,4)-code to the right is  a  simplex code which means that  all  possible  pairs  of different 
codewords exactly differ in the same number of bits (8 bits in this case).  Repetition codes are not 
listed here.  Repetition codes  simply repeat  the information bits.   A (12,4)-repetion code would 
transmit each information bit three times.

     uncoded          Hamming          Reed-Muller          Convolutional                     Simplex

  0000 0   0000000 0   00000000   000000000000   000000000000000  
  0001 1   0001111 0   01010101   000110011101   101010101010101  
  0010 1   0010110 1   00110011   001000111011   011001100110011  
  0011 0   0011001 1   01100110   001110100110   110011001100110  
  0100 1   0100101 1   00001111   010001100111   000111100001111  
  0101 0   0101010 1   01011010   010111111010   101101001011010  
  0110 0   0110011 0   00111100   011001011100   011110000111100  
  0111 1   0111100 0   01101001   011111000001   110100101101001  
  1000 1   1000011 1   11111111   100011001110   000000011111111  
  1001 0   1001100 1   10101010   100101010011   101010110101010  
  1010 0   1010101 0   11001100   101011110101   011001111001100  
  1011 1   1011010 0   10011001   101101101000   110011010011001  
  1100 0   1100110 0   11110000   110010101001   000111111110000  
  1101 1   1101001 0   10100101   110100110100   101101010100101  
  1110 1   1110000 1   11000011   111010010010   011110011000011  
  1111 0   1111111 1   10010110   111100001111   110100110010110  

Figure 5 presents the word error rates of the codes listed in table 1 as a function of  Eb/N0 .  These 
are results of  2000000 transmissions per point over a simulated AWGN-channel using the encoding 
and decoding of real transmissions.



To discuss the gain of the codes we first look at the uncoded case for  k = 4  information bits. This 
black line shows at  Eb/N0 = 4 dB  a word error rate of  0.05 , which means that in  5% of all  trans-
missions of  4 uncoded binary digits at least one of the bits will be received faulty.  If the parity 
code is used then 5  binary digits must be transferred with the same total energy instead of 4. This 
increases the necessary bandwidth and the noise power by a factor of  5/4 . Nevertheless, the word 
error rate reduces to  0.02 .  The other codes need much more bandwidth, while the word error rate 
is further decreased until 0.0065.  But the conclusion, only the code rate  r = k/n  must be small to 
get a low word error rate is wrong.  A repetition code for example is not better than the uncoded 
transmission over an AWGN channel. 

The behavior of codes with some more information is shown by the example of a tail biting convol-
utional code that encodes 28 information bits into 1960 binary digits.  While the maximum code 
gain for  4  information bits at a word error rate of  0.1 only is 2 db  it is  5.7 dB  for a transmission 
of 28 information bits (black arrow). With further increasing information content of a codeword 
these curves approximate the vertical red line indicating the Shannon limit.

Fig 5 :  Word error rates as a function of  Eb/N0  for all codes of table 1.  The error rate of the
Reed-Muller-code is identical to that of the extended Hamming-code.  Additionally, this figure 
shows the word error rates of the uncoded and the encoded transmission of 28 information bits. 
While the maximum code gain for  4  information bits at a word error rate of  0.1 only is 2 db it
is  5.7 dB  for a transmission of 28 information bits.  At constant energy per bit of  Eb/N0 = 0 dB
(i.e. 1.59 dB apart from the Shannon limit) the word error rates for an uncoded and an encoded 

transmission are  0.9  resp. 0.079 .  In the uncoded case a QSO will not run while it will run
mostly errorfree in the encoded case.



Left from the Shannon limit the case of 28 information bits seem to be worse than that of 4 bits. But 
that is not the case. To transmit 28 bits using the codes that encode 4 bits we must send 7 codewords 
instead of only one. The probability that at least one of them is faulty is larger for all codes of 
table 1 compared to the word error rate of the (1960,28)-convolutional code shown in figure 5.

To rate a code often a single value of  Eb/N0  that guarantees a fixed word error rate is sufficient. 
Instead of the usual  Pw = 10-4  (or even 10-6) we choose the word error rate  Pw = 0.1 .  The (15,4)-
simplex code in figure 5 crosses the horizontal line of  Pw = 0.1  at  Eb/N0 = 0.75 dB. These values 
are shown in figure 6 for some codes over the number of information bits to be encoded. This figure 
compares to figure 4.  But it is reduced to the area relevant for minimal QSOs. 

Fig 6 :  Necessary values of  Eb/N0  to reach a word error rate of  0.1 for some binary codes
on the AWGN-channel. The abscissa is the number of information bits to be encoded.

4. Code Gain

The black arrow in figure 5 indicates the gain of the (1960,28)-code over the uncoded transmission. 
The corresponding gain of many binary codes at  Pw = 0.1  is shown in figure 7. The gain rapidly 
increases with increasing information content of the codewords.  In a minimal QSO no more than 
about 28 bits are transmitted.  In that case a code obviously cannot have a gain larger than 6 dB 
over the uncoded transmission.  But, in contrast to commercial  applications amateurs can nearly 
reach that gain, i.e. an encoded minimal QSO only needs  ¼  of the power of an uncoded one. 



 
Fig 7 :  Gain of some codes over the uncoded transmission (AWGN). There is no possible gain if 
only one single bit must be transmitted (a final RRR for example).   The maximum possible gain

of an encoded transmission of  6 (30)  information bits is  3 (6) dB resp..  The gain is considerably
larger when large information content is encoded (4 k bits for ex.). This figure shows the region

relevant for a minimal QSO with transmission of callsigns, reports, and rogers only.
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